主页 > 美食DAY >

健康有益:视觉处理应用让机器认知我们的食物

编辑:小豹子/2018-06-14 13:50

  伴随全球对人工智能的关注度不断提升,市场对机器视觉等人工智能产品的需求得到进一步释放,机器视觉技术正蓬勃发展。图像识别、视频识别、三维重建、人脸识别、运动检测技术已经越来越成熟,并渗入百姓的日常生活中,从手机里的面部识别功能,到家用安全门面部识别、支付宝面部识别等均运用了机器视觉技术。

  健康有益作为国内专注人工智能与健康管理的科技公司,根据市场需求切入图像识别技术,深度应用于食物识别的研究和场景使用。根据最新测试数据的结果显示,健康有益对于常见菜品的识别已达到了千余种,其识别准确率超过90%。

  从技术原理角度看,食物识别使用的是卷积神经网络(Convolutional Neural Networks,简称CNN)中的残差神经网络结构(Residual Networks,简称ResNet),最大的特点就是让深层网络训练的难易度降低了几个数量级。在ResNet结构中,食物识别是经过三大层级训练出来的。

  卷积层

  在此阶段,食物图像被扫描,作为输入传递到网络中。首先将图像平均分割成无数个小片段,每个片段将应用一层卷积层凤凰彩票网(5557713.com),卷积层将小片段再次分为3层图像组成三维立方体结构,每一个层图像都呈现RGB三原色中的一种颜色信息。随后,将卷积滤波器(也称作神经元)应用到每一层图像中,犹如滤镜效果过滤出某些相似的特征。可以想象,数百个不同的滤波器组成的网络就可以获取图片中的各种复杂特征,形成特征图,最终完成特征提取工作。

  池化层

  在池化层,从特征图中发现,一旦我们知道给定特征在一个给定区域内,即可忽略特征的确切位置,将数据普遍化,从而减少数据过拟合。因此,在池化过程中,特征图被不断的压缩,最终可以大大减少数据量,增加运算速度。

  全连接层

  全连接网络层作为神经网络的结束层。该层将之前层(卷积层、激活层或者池化层)的处理结果作为输入,并输出一个N维的向量,N是程序所选择的类别的数量。例如,如果程序预测某张图像是香蕉,它就会在代表黄色或者一定弧度外形等高级特征的激活映射中有较高的值。本质上讲,一个全连接层关注与特定类相关性最强、并且有特定权重的高层特征,以便能在计算权重与前面一层乘积后得到不同类的正确概率。

  在应用场景上,健康管理非常重要的一环就是健康饮食,因此在对食物进行营养成份查询以及日常记录的场景下,食物识别发挥了极大的作用。比如在日常就餐时对当前食物进行拍照,立刻就能得到反馈信息,识别所拍摄的食物种类并展示其基础营养素信息,承载系统会基于个人体征数据推荐摄入量与食用建议;同样的就餐场景下,在获取营养素信息的同时,完成饮食记录,为每个用户实现精准健康管理创造无障碍通道。在未来的场景中,通过识别食物的质量和体积,系统可以更加精准地计算实际消耗热量。

  健康有益作为将人工智能与健康管理相结合的科技公司,已全面开启AI在健康管理领域的应用与落地,致力于探索创新人类个性化健康管理的新方式。未来健康有益会与更多的行业巨头展开合作,通过技术与健康管理的深度融合,帮助人类更好地量化生命,实现凤凰彩票娱乐平台(5557713.com)自我管理。

健康有益:视觉处理应用让机器认知我们的食物